Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37872843

RESUMO

Pituitary hormones play a central role in shaping vertebrate life history events, including growth, reproduction, metabolism, and aging. The regulation of these traits often requires precise control of hormone levels across diverse timescales. However, fine tuning circulating hormones in-vivo has traditionally been experimentally challenging. Here, using the naturally short-lived turquoise killifish (N. furzeri), we describe a high-throughput platform that combines loss- and gain-of-function of peptide hormones. Mutation of three primary pituitary hormones, growth hormone (gh1), follicle stimulating hormone (fshb), and thyroid stimulating hormone (tshb), alters somatic growth and reproduction. Thus, suggesting that while the killifish undergoes extremely rapid growth and maturity, it still relies on vertebrate-conserved genetic networks. As the next stage, we developed a gain-of-function vector system in which a hormone is tagged using a self-cleavable fluorescent reporter, and ectopically expressed in-vivo through intramuscular electroporation. Following a single electroporation, phenotypes, such as reproduction, are stably rescued for several months. Notably, we demonstrate the versatility of this approach by using multiplexing, dose-dependent, and doxycycline-inducible systems to achieve tunable and reversible expression. In summary, this method is relatively high-throughput, and facilitates large-scale interrogation of life-history strategies in fish. Ultimately, this approach could be adapted for modifying aquaculture species and exploring pro-longevity interventions.


In humans and other vertebrates, a pea-size gland at the base of the brain called the pituitary gland, produces many hormones that regulate how individuals grow, reproduce, and age. Three of the most prominent hormones are known as the growth hormone, the follicle-stimulating hormone, and the thyroid-stimulating hormone. It is important that the body precisely controls the levels of these hormones throughout an individual's life. One way researchers can investigate how hormones and other molecules work is to artificially alter the levels of the molecules in living animals. However, this has proved to be technically challenging and time-consuming for pituitary gland hormones. Moses et al. studied the growth hormone, follicle-stimulating hormone, and thyroid-stimulating hormone in the turquoise killifish, a small fish that grows and matures more rapidly than any other vertebrate research model. The experiments revealed that mutant fish lacking one of the three primary pituitary hormones were smaller, took longer to reach maturity, or were completely sterile. This suggests these three hormones play a similar role in killifish as they do in other vertebrates. The team then developed a new experimental platform to precisely control the levels of the three hormones in killifish. Genes encoding individual hormones were expressed in the muscles of the mutant fish, effectively making the muscles a 'factory' for producing that hormone. Treating mutant fish this way once was enough to restore growth and to fully return reproduction to normal levels for several months. Moses et al. also demonstrated that it is possible to use this platform to express more than one hormone gene at a time and to use drugs to switch hormone production on and off in a reversible manner. For example, this reversible approach made it possible to effectively adjust fertility levels. The new platform developed in this work could be adapted for modifying a variety of traits in animals to explore how they impact health and longevity. In the future, it may also have other applications, such as optimizing how farmed fish grow and reproduce and regulating hormone levels in human patients with hormone imbalances.


Assuntos
Fundulidae , Hormônios Peptídicos , Animais , Hormônio do Crescimento/metabolismo , Hormônios Hipofisários , Longevidade
2.
Dev Cell ; 58(15): 1350-1364.e10, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321215

RESUMO

During aging, the loss of metabolic homeostasis drives a myriad of pathologies. A central regulator of cellular energy, the AMP-activated protein kinase (AMPK), orchestrates organismal metabolism. However, direct genetic manipulations of the AMPK complex in mice have, so far, produced detrimental phenotypes. Here, as an alternative approach, we alter energy homeostasis by manipulating the upstream nucleotide pool. Using the turquoise killifish, we mutate APRT, a key enzyme in AMP biosynthesis, and extend the lifespan of heterozygous males. Next, we apply an integrated omics approach to show that metabolic functions are rejuvenated in old mutants, which also display a fasting-like metabolic profile and resistance to high-fat diet. At the cellular level, heterozygous cells exhibit enhanced nutrient sensitivity, reduced ATP levels, and AMPK activation. Finally, lifelong intermittent fasting abolishes the longevity benefits. Our findings suggest that perturbing AMP biosynthesis may modulate vertebrate lifespan and propose APRT as a promising target for promoting metabolic health.


Assuntos
Proteínas Quinases Ativadas por AMP , Longevidade , Masculino , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/metabolismo , Homeostase , Vertebrados/metabolismo , Metabolismo Energético
3.
Cold Spring Harb Protoc ; 2023(2): 90-99, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223984

RESUMO

The African turquoise killifish Nothobranchius furzeri has recently gained interest as an emerging vertebrate model system for the study of aging, owing to its naturally short life span and generation time. Here, we provide a step-by-step guide for effective genome engineering using the CRISPR-Cas9 system to generate loss-of-function (i.e., knockout) alleles and for precise editing (i.e., knock-in) of short sequences into the genome. Using this approach, a new stable line can be created within several months. The killifish's tough chorion, rapid growth, and short life span are considered in this protocol and account for the key deviations from similar protocols in other fish models.


Assuntos
Sistemas CRISPR-Cas , Ciprinodontiformes , Animais , Técnicas de Inativação de Genes , Edição de Genes , Longevidade/genética , Envelhecimento/genética , Ciprinodontiformes/genética
4.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187630

RESUMO

Classical evolutionary theories propose tradeoffs between reproduction, damage repair, and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. Here, we use the turquoise killifish ( N. furzeri ) to genetically arrest germline differentiation at discrete stages, and examine how different 'flavors' of infertility impact life-history. We first constructed a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. Next, investigating our genetic models revealed that only germline depletion enhanced female damage repair, while arresting germline differentiation did not. Conversely, germline-depleted males were significantly long-lived, indicating that the mere presence of the germline can negatively affect lifespan. Transcriptomic analysis highlighted enrichment of pro-longevity pathways and genes, with functional conservation in germline-depleted C. elegans . Finally, germline depletion extended male healthspan through rejuvenated metabolic functions. Our results suggest that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative mechanisms to classical evolutionary tradeoffs.

5.
Nat Methods ; 19(10): 1150-1151, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36203025
6.
Immunity ; 55(4): 606-622.e6, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35358427

RESUMO

Lymph node (LN) stromal cells play a crucial role in LN development and in supporting adaptive immune responses. However, their origin, differentiation pathways, and transcriptional programs are still elusive. Here, we used lineage-tracing approaches and single-cell transcriptome analyses to determine origin, transcriptional profile, and composition of LN stromal and endothelial progenitors. Our results showed that all major stromal cell subsets and a large proportion of blood endothelial cells originate from embryonic Hoxb6+ progenitors of the lateral plate mesoderm (LPM), whereas lymphatic endothelial cells arise from Pax3+ progenitors of the paraxial mesoderm (PXM). Single-cell RNA sequencing revealed the existence of different Cd34+ and Cxcl13+ stromal cell subsets and showed that embryonic LNs contain proliferating progenitors possibly representing the amplifying populations for terminally differentiated cells. Taken together, our work identifies the earliest embryonic sources of LN stromal and endothelial cells and demonstrates that stromal diversity begins already during LN development.


Assuntos
Células Endoteliais , Células Endoteliais/metabolismo , Linfonodos , Análise de Sequência de RNA , Análise de Célula Única , Células Estromais , Fatores de Transcrição/metabolismo
7.
Genome Res ; 29(4): 697-709, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858345

RESUMO

Aging is accompanied by the functional decline of tissues. However, a systematic study of epigenomic and transcriptomic changes across tissues during aging is missing. Here, we generated chromatin maps and transcriptomes from four tissues and one cell type from young, middle-aged, and old mice-yielding 143 high-quality data sets. We focused on chromatin marks linked to gene expression regulation and cell identity: histone H3 trimethylation at lysine 4 (H3K4me3), a mark enriched at promoters, and histone H3 acetylation at lysine 27 (H3K27ac), a mark enriched at active enhancers. Epigenomic and transcriptomic landscapes could easily distinguish between ages, and machine-learning analysis showed that specific epigenomic states could predict transcriptional changes during aging. Analysis of data sets from all tissues identified recurrent age-related chromatin and transcriptional changes in key processes, including the up-regulation of immune system response pathways such as the interferon response. The up-regulation of the interferon response pathway with age was accompanied by increased transcription and chromatin remodeling at specific endogenous retroviral sequences. Pathways misregulated during mouse aging across tissues, notably innate immune pathways, were also misregulated with aging in other vertebrate species-African turquoise killifish, rat, and humans-indicating common signatures of age across species. To date, our data set represents the largest multitissue epigenomic and transcriptomic data set for vertebrate aging. This resource identifies chromatin and transcriptional states that are characteristic of young tissues, which could be leveraged to restore aspects of youthful functionality to old tissues.


Assuntos
Envelhecimento/genética , Epigênese Genética , Imunidade Inata/genética , Transcriptoma , Animais , Código das Histonas , Inflamação/genética , Interferons/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Nat Protoc ; 11(10): 2010-2028, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27658015

RESUMO

A central challenge in experimental aging research is the lack of short-lived vertebrate models for genetic studies. Here we present a comprehensive protocol for efficient genome engineering in the African turquoise killifish (Nothobranchius furzeri), which is the shortest-lived vertebrate in captivity with a median life span of 4-6 months. By taking advantage of the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) system and the turquoise killifish genome, this platform enables the generation of knockout alleles via nonhomologous end joining (NHEJ) and knock-in alleles via homology-directed repair (HDR). We include guidelines for guide RNA (gRNA) target design, embryo injection and hatching, germ-line transmission and for minimizing off-target effects. We also provide strategies for Tol2-based transgenesis and large-scale husbandry conditions that are critical for success. Because of the fast life cycle of the turquoise killifish, stable lines can be generated as rapidly as 2-3 months, which is much faster than other fish models. This protocol provides powerful genetic tools for studying vertebrate aging and aging-related diseases.

9.
Artigo em Inglês | MEDLINE | ID: mdl-26642856

RESUMO

Why and how organisms age remains a mystery, and it defines one of the biggest challenges in biology. Aging is also the primary risk factor for many human pathologies, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. Thus, manipulating the aging rate and potentially postponing the onset of these devastating diseases could have a tremendous impact on human health. Recent studies, relying primarily on nonvertebrate short-lived model systems, have shown the importance of both genetic and environmental factors in modulating the aging rate. However, relatively little is known about aging in vertebrates or what processes may be unique and specific to these complex organisms. Here we discuss how advances in genomics and genome editing have significantly expanded our ability to probe the aging process in a vertebrate system. We highlight recent findings from a naturally short-lived vertebrate, the African turquoise killifish, which provides an attractive platform for exploring mechanisms underlying vertebrate aging and age-related diseases.


Assuntos
Envelhecimento/genética , Peixes Listrados/genética , Animais , Edição de Genes , Genômica , Modelos Animais , Fenótipo , Telomerase/genética
10.
Cell ; 163(6): 1539-54, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26638078

RESUMO

Lifespan is a remarkably diverse trait ranging from a few days to several hundred years in nature, but the mechanisms underlying the evolution of lifespan differences remain elusive. Here we de novo assemble a reference genome for the naturally short-lived African turquoise killifish, providing a unique resource for comparative and experimental genomics. The identification of genes under positive selection in this fish reveals potential candidates to explain its compressed lifespan. Several aging genes are under positive selection in this short-lived fish and long-lived species, raising the intriguing possibility that the same gene could underlie evolution of both compressed and extended lifespans. Comparative genomics and linkage analysis identify candidate genes associated with lifespan differences between various turquoise killifish strains. Remarkably, these genes are clustered on the sex chromosome, suggesting that short lifespan might have co-evolved with sex determination. Our study provides insights into the evolutionary forces that shape lifespan in nature.


Assuntos
Evolução Biológica , Peixes Listrados/genética , Envelhecimento , Animais , DNA Helicases/genética , Genoma , Humanos , Longevidade , Anotação de Sequência Molecular , Dados de Sequência Molecular , Seleção Genética
11.
Nat Biotechnol ; 33(7): 736-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25985263

RESUMO

Alternative splicing shapes mammalian transcriptomes, with many RNA molecules undergoing multiple distant alternative splicing events. Comprehensive transcriptome analysis, including analysis of exon co-association in the same molecule, requires deep, long-read sequencing. Here we introduce an RNA sequencing method, synthetic long-read RNA sequencing (SLR-RNA-seq), in which small pools (≤1,000 molecules/pool, ≤1 molecule/gene for most genes) of full-length cDNAs are amplified, fragmented and short-read-sequenced. We demonstrate that these RNA sequences reconstructed from the short reads from each of the pools are mostly close to full length and contain few insertion and deletion errors. We report many previously undescribed isoforms (human brain: ∼13,800 affected genes, 14.5% of molecules; mouse brain ∼8,600 genes, 18% of molecules) and up to 165 human distant molecularly associated exon pairs (dMAPs) and distant molecularly and mutually exclusive pairs (dMEPs). Of 16 associated pairs detected in the mouse brain, 9 are conserved in human. Our results indicate conserved mechanisms that can produce distant but phased features on transcript and proteome isoforms.


Assuntos
Processamento Alternativo/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Animais , Química Encefálica , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de RNA/genética
12.
Cell ; 160(5): 1013-1026, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25684364

RESUMO

VIDEO ABSTRACT: Aging is a complex process that affects multiple organs. Modeling aging and age-related diseases in the lab is challenging because classical vertebrate models have relatively long lifespans. Here, we develop the first platform for rapid exploration of age-dependent traits and diseases in vertebrates, using the naturally short-lived African turquoise killifish. We provide an integrative genomic and genome-editing toolkit in this organism using our de-novo-assembled genome and the CRISPR/Cas9 technology. We mutate many genes encompassing the hallmarks of aging, and for a subset, we produce stable lines within 2-3 months. As a proof of principle, we show that fish deficient for the protein subunit of telomerase exhibit the fastest onset of telomere-related pathologies among vertebrates. We further demonstrate the feasibility of creating specific genetic variants. This genome-to-phenotype platform represents a unique resource for studying vertebrate aging and disease in a high-throughput manner and for investigating candidates arising from human genome-wide studies.


Assuntos
Peixes Listrados/fisiologia , Envelhecimento , Animais , Sequência de Bases , Sistemas CRISPR-Cas , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Técnicas Genéticas , Humanos , Peixes Listrados/genética , Masculino , Modelos Animais , Dados de Sequência Molecular , Telomerase/genética , Telomerase/metabolismo , Vertebrados/fisiologia
13.
Proc Natl Acad Sci U S A ; 109(46): 18839-44, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23112163

RESUMO

The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a previously undescribed player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects.


Assuntos
Padronização Corporal/fisiologia , Embrião de Mamíferos/embriologia , Cabeça/embriologia , Coração/embriologia , Mesoderma/embriologia , Músculo Esquelético/embriologia , Miocárdio , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout
14.
Proc Natl Acad Sci U S A ; 109(28): 11211-6, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22736793

RESUMO

A fundamental aspect of skeletal myogenesis involves extensive rounds of cell fusion, in which individual myoblasts are incorporated into growing muscle fibers. Here we demonstrate that N-WASp, a ubiquitous nucleation-promoting factor of branched microfilament arrays, is an essential contributor to skeletal muscle-cell fusion in developing mouse embryos. Analysis both in vivo and in primary satellite-cell cultures, shows that disruption of N-WASp function does not interfere with the program of skeletal myogenic differentiation, and does not affect myoblast motility, morphogenesis and attachment capacity. N-WASp-deficient myoblasts, however, fail to fuse. Furthermore, our analysis suggests that myoblast fusion requires N-WASp activity in both partners of a fusing myoblast pair. These findings reveal a specific role for N-WASp during mammalian myogenesis. WASp-family elements appear therefore to act as universal mediators of the myogenic cell-cell fusion mechanism underlying formation of functional muscle fibers, in both vertebrate and invertebrate species.


Assuntos
Actinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Músculos/citologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Diferenciação Celular , Fusão Celular , Células Cultivadas , Cruzamentos Genéticos , Drosophila , Heterozigoto , Camundongos , Camundongos Endogâmicos ICR , Modelos Biológicos , Desenvolvimento Muscular , Músculos/embriologia , Fatores de Tempo
15.
Development ; 137(17): 2961-71, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20699298

RESUMO

In vertebrates, body musculature originates from somites, whereas head muscles originate from the cranial mesoderm. Neck muscles are located in the transition between these regions. We show that the chick occipital lateral plate mesoderm has myogenic capacity and gives rise to large muscles located in the neck and thorax. We present molecular and genetic evidence to show that these muscles not only have a unique origin, but additionally display a distinct temporal development, forming later than any other muscle group described to date. We further report that these muscles, found in the body of the animal, develop like head musculature rather than deploying the programme used by the trunk muscles. Using mouse genetics we reveal that these muscles are formed in trunk muscle mutants but are absent in head muscle mutants. In concordance with this conclusion, their connective tissue is neural crest in origin. Finally, we provide evidence that the mechanism by which these neck muscles develop is conserved in vertebrates.


Assuntos
Mesoderma/embriologia , Desenvolvimento Muscular , Músculos do Pescoço/embriologia , Animais , Animais Geneticamente Modificados , Proteínas Aviárias/genética , Evolução Biológica , Embrião de Galinha , Coturnix , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Desenvolvimento Muscular/genética , Mutação , Crista Neural/embriologia , Fatores de Transcrição Box Pareados/genética , Somitos/embriologia , Quimeras de Transplante/embriologia , Quimeras de Transplante/genética
16.
J Cell Biol ; 187(1): 91-100, 2009 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-19786578

RESUMO

Merkel cells (MCs) are located in the touch-sensitive area of the epidermis and mediate mechanotransduction in the skin. Whether MCs originate from embryonic epidermal or neural crest progenitors has been a matter of intense controversy since their discovery >130 yr ago. In addition, how MCs are maintained during adulthood is currently unknown. In this study, using lineage-tracing experiments, we show that MCs arise through the differentiation of epidermal progenitors during embryonic development. In adults, MCs undergo slow turnover and are replaced by cells originating from epidermal stem cells, not through the proliferation of differentiated MCs. Conditional deletion of the Atoh1/Math1 transcription factor in epidermal progenitors results in the absence of MCs in all body locations, including the whisker region. Our study demonstrates that MCs arise from the epidermis by an Atoh1-dependent mechanism and opens new avenues for study of MC functions in sensory perception, neuroendocrine signaling, and MC carcinoma.


Assuntos
Células Epidérmicas , Homeostase , Células de Merkel/citologia , Células de Merkel/fisiologia , Envelhecimento , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Caderinas/metabolismo , Diferenciação Celular , Linhagem da Célula , Epiderme/metabolismo , Epiderme/ultraestrutura , Técnica Direta de Fluorescência para Anticorpo , Imuno-Histoquímica , Integrases/genética , Integrases/metabolismo , Células de Merkel/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Crista Neural/citologia , Crista Neural/embriologia , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Pele/citologia , Pele/embriologia , Pele/metabolismo , Pele/ultraestrutura , Células-Tronco/citologia , Fatores de Tempo , Vibrissas/citologia , Vibrissas/embriologia , Vibrissas/metabolismo
17.
Dev Cell ; 16(6): 822-32, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19531353

RESUMO

Adult skeletal muscle possesses a remarkable regenerative capacity, due to the presence of satellite cells, adult muscle stem cells. We used fate-mapping techniques in avian and mouse models to show that trunk (Pax3(+)) and cranial (MesP1(+)) skeletal muscle and satellite cells derive from separate genetic lineages. Similar lineage heterogeneity is seen within the head musculature and satellite cells, due to their shared, heterogenic embryonic origins. Lineage tracing experiments with Isl1Cre mice demonstrated the robust contribution of Isl1(+) cells to distinct jaw muscle-derived satellite cells. Transplantation of myofiber-associated, Isl1-derived satellite cells into damaged limb muscle contributed to muscle regeneration. In vitro experiments demonstrated the cardiogenic nature of cranial- but not trunk-derived satellite cells. Finally, overexpression of Isl1 in the branchiomeric muscles of chick embryos inhibited skeletal muscle differentiation in vitro and in vivo, suggesting that this gene plays a role in the specification of cardiovascular and skeletal muscle stem cell progenitors.


Assuntos
Linhagem da Célula , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Células Cultivadas , Embrião de Galinha , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Extremidades/patologia , Regulação da Expressão Gênica no Desenvolvimento , Heterogeneidade Genética , Cabeça , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM , Mesoderma/citologia , Mesoderma/transplante , Camundongos , Desenvolvimento Muscular , Músculos/patologia , Músculos/fisiologia , Miocárdio/metabolismo , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/metabolismo , Codorniz/embriologia , Regeneração , Fatores de Transcrição
18.
Development ; 135(4): 647-57, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18184728

RESUMO

During embryogenesis, paraxial mesoderm cells contribute skeletal muscle progenitors, whereas cardiac progenitors originate in the lateral splanchnic mesoderm (SpM). Here we focus on a subset of the SpM that contributes to the anterior or secondary heart field (AHF/SHF), and lies adjacent to the cranial paraxial mesoderm (CPM), the precursors for the head musculature. Molecular analyses in chick embryos delineated the boundaries between the CPM, undifferentiated SpM progenitors of the AHF/SHF, and differentiating cardiac cells. We then revealed the regionalization of branchial arch mesoderm: CPM cells contribute to the proximal region of the myogenic core, which gives rise to the mandibular adductor muscle. SpM cells contribute to the myogenic cells in the distal region of the branchial arch that later form the intermandibular muscle. Gene expression analyses of these branchiomeric muscles in chick uncovered a distinct molecular signature for both CPM- and SpM-derived muscles. Islet1 (Isl1) is expressed in the SpM/AHF and branchial arch in both chick and mouse embryos. Lineage studies using Isl1-Cre mice revealed the significant contribution of Isl1(+) cells to ventral/distal branchiomeric (stylohyoid, mylohyoid and digastric) and laryngeal muscles. By contrast, the Isl1 lineage contributes to mastication muscles (masseter, pterygoid and temporalis) to a lesser extent, with virtually no contribution to intrinsic and extrinsic tongue muscles or extraocular muscles. In addition, in vivo activation of the Wnt/beta-catenin pathway in chick embryos resulted in marked inhibition of Isl1, whereas inhibition of this pathway increased Isl1 expression. Our findings demonstrate, for the first time, the contribution of Isl1(+) SpM cells to a subset of branchiomeric skeletal muscles.


Assuntos
Região Branquial/embriologia , Proteínas de Homeodomínio/metabolismo , Mesoderma/citologia , Desenvolvimento Muscular , Músculo Esquelético/embriologia , Vísceras/citologia , Animais , Região Branquial/citologia , Região Branquial/metabolismo , Diferenciação Celular , Linhagem da Célula , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Cabeça , Coração/embriologia , Proteínas de Homeodomínio/genética , Hibridização in Situ Fluorescente , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Morfogênese , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Vísceras/embriologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...